HYBRID DISCOUNTINIOS GALERKIN METHODS FOR ANISOTROPIC DIFFUSION EQUATION

Masaru Miyashita¹ and Norikazu Saito²

¹Technology Research Center,
Sumitomo Heavy Industries, Ltd., 19 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8555, Japan
Msu_Miyashita@shi.co.jp

² Graduate School of Mathematical Sciences, University of Tokyo
3-8-1 Komaba Megro-ku Tokyo 153-8941, Japan
norikazu@ms.u-tokyo.ac.jp

Abstract

We examine two Hybrid Discontinuous Galerkin methods for anisotropic diffusion equation and perform a priori and posteriori error analysis with rectangular mesh. A posteriori error analysis supports a tendency of a priori error analysis.

Key Words: anisotropic diffusion equation, hybrid discontinuous galerkin method, error analysis

1 Introduction

$$-\nabla \cdot \mathbf{A}(\mathbf{x})\nabla \mathbf{u}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \text{ in } \mathbf{x} \in \Omega, \mathbf{u}(\mathbf{x}) = 0 \text{ on } \mathbf{x} \partial\Omega$$

$$\mathbf{A}(\mathbf{x}) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} A_{\parallel}(\mathbf{x}) & 0 \\ 0 & A_{\perp}(\mathbf{x}) \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$(1)$$

Equation (1) represents anisotropic diffusion phenomenon in such as plasma physics. In this equation, diffusion coefficient has different values toward vector field $F(A_{\parallel},A_{\perp}(=\beta A_{\parallel}))$. We developed plasma simulation code using this equation. In next work, we consider to introduce n-tree adaptive mesh technique. Hybrid Discontinuous Galerkin (HDG) method can directly be applied to any mesh with floating node such as n-tree mesh. For this reason, we investigate HDG method for anisotropic diffusion equation.

2 Hybrid Discontinuous Galerkin Method

For precise analysis, we define function spaces as follows. We introduce a mesh $K_h = \{K\}$, where, $h_K = \text{diam } K$, $h = \max_{K \in K_h} E_h = \{e \in \partial K \mid K \in K_h\}$. A broken Sobolev space is introduced as $H^k(K_h) = \{v \in L^2(\Omega) : v|_K \in H^k(K)\}$. The so-called skeleton is defined as $\Gamma_h := \bigcup_{e \in E_h} e$. We set $V := H^2(K_h) \times L_D^2(\Gamma_h)$. The inner products are defined by $(u, v)_{K_h} = \sum_{K \in K_h} \int_K uv \, dx \, (\forall u, v \in L^2(\Omega))$ and $\langle \hat{u}, \hat{v} \rangle_{\partial K} = \sum_{K \in K_h} \int_{\partial K} \hat{u}\hat{v} \, dx \, (\forall \hat{u}, \hat{v} \in L^2(\Gamma_h))$. Polynomial function space on each meshes are $P^k(K_h)$, $P^k(E_h)$. Furthermore, $V_h^k := P^k(K_h)$, $V_h^k := P^l(E_h) \cap L_D^2(\Gamma_h)$, $V_h^{k,l} := V_h^k \times V_h^l$. We consider the following HDG equation:

Find
$$B_h(\vec{u}_h, \vec{v}_h) = (f, v_h) \,\forall \, \vec{v}_h \in V_h^k$$
 (2)

$$\begin{split} B_h(\vec{u}_h, \vec{v}_h) &= (A \nabla u_h, \nabla v_h)_{K_h} + \langle (A \nabla u_h)_n, \hat{v}_h - v_h \rangle_{\partial K_h} \\ &+ \langle (A \nabla v_h)_n, \hat{u}_h - u_h \rangle_{\partial K_h} + \tau \langle \Lambda(\hat{u}_h - u_h), \hat{v}_h - v_h \rangle_{\partial K_h} \end{split}$$
 We introduce following HDG norm. C₁, C₂, C₃ are positive constants.

$$\left| \left| |u| \right| \right|_{HDG} := \sum_{K \in K_h} \left\{ \left| |\nabla u| \right|_K^2 + 1/h \left| |u - u_F| \right|_{\partial K}^2 + h \left| |\nabla u| \right|_{\partial K}^2 \right\}$$
(3)

(Coercivity)
$$|B_h(\vec{u}_h, \vec{u}_h)| \ge C_1 \left| \left| |\vec{u}_h| \right| \right|_{HDG}^2 \tag{4}$$

(Boundness)
$$B_{h}(\vec{u}_{h}, \vec{v}_{h}) \leq C_{2} \left| \left| \left| \vec{u}_{h} \right| \right| \right|_{HDG} \left| \left| \left| \vec{v}_{h} \right| \right| \right|_{HDG}$$
 (5)

(Consistency)
$$B_h(\vec{u}, \vec{v}_h) = (f, v_h) \left(= B_h(\vec{u}_h, \vec{v}_h) \right)$$
 (6)

(Symmetry)
$$B_h(\vec{u}_h, \vec{v}_h) = B_h(\vec{v}_h, \vec{u}_h) \tag{7}$$

From coercivity and boundness, there exists a unique weak solution of (2). Furthermore, for consistency and symmetry, L2 error estimate is shown by Aubin nitsch's trick.

(L2 norm error estimate)
$$||u - u_h||_{L^2} \le C_3 h^{k+1}$$
 (8)

3 Numerical Results

We consider k=1 and rectangular mesh, where the calculation region is $[0,1]^2$. Let a vector field F satisfies the relation $\tan \theta = F_y/F_x = (2x-1)/(2y-1)$, $A_{\parallel} = 1$. We suppose $u(x, y) = \sin(\pi x) \sin(\pi y)$ and derive a source term f. We calculate u_h by HDG method using derived A(x) and f. Table 1 shows L2 error. Therein, CG is continuous Galerkin method and C in HDG_C_* means continuous Skelton and D in HDG_D_* means discontinuous Skelton. HDG_*_A2 means case of $\Lambda = A_n \cdot A_n$ and HDG_*_I means case of $\Lambda = 1$, respectity.

Table 1 error $ u-u_h _{L^2}$					
$\beta = 1e-3$		$\tau = 10^8$	<i>112</i>		
h	CG	HDG_C_I	HDG_C_A2	HDG_D_I	HDG_D_A2
0.333333	5.23E-01	7.42E-01	7.42E-01	7.51E-01	7.51E-01
0.142857	1.68E-01	2.08E-01	2.08E-01	2.08E-01	2.08E-01
0.066666	5.84E-02	5.23E-02	5.23E-02	5.21E-02	5.21E-02
0.032258	1.92E-02	1.36E-02	1.36E-02	1.36E-02	1.36E-02
0.015873	5.96E-03	3.61E-03	3.61E-03	3.61E-03	3.61E-03
0.007874	1.74E-03	9.56E-04	9.56E-04	9.55E-04	9.55E-04
0.003922	4.83E-04	2.52E-04	2.52E-04	2.50E-04	2.50E-04
Order	1.99E+00	1.84E+00	1.84E+00	1.84E+00	1.84E+00

4 Conclusions

We performed a priori and a posteriori error analysis with rectangular mesh. A posteriori error analysis supports a tendency of a priori error analysis. In the future work, we will study HDG method for anisotropic diffusion problem on rectangular adaptive mesh with floating node.

REFERENCES

- [1] M. Miyashita, et.al. Frontier of Applied plasma Technology 5:79, (2012).
- [2] C. Lu, et.al. *Numericshe Mathematik.* **127**:515-537, (2014).
- [3] I. Oikawa, *JSIAM Letters* **2**:99-102. (2010).